## Phytoplankton as Indicator of Water Quality in Lake Durowskie, Wągrowiec Poland

Ee-ling, Ng <sup>2</sup> Hyejin, Lee <sup>2</sup> Magda, Cichocka <sup>1</sup> Magda, Kieruj <sup>1</sup> Sakson, Soisontes <sup>1</sup> Naicheng, Wu <sup>1</sup> Beata, Messyasz <sup>2</sup> (Supervisor)

Ökologie-Zentrum, Christian-Albrechts-Universität, Olshausenstrasse 75, Geb. ID-24118 Kiel, Germany
Universytet im. A. Mickiewicza w Poznaniu, Polska

2 August 2009

## **Table of Content**

| 1. Aims                                                                      | 3         |
|------------------------------------------------------------------------------|-----------|
| 2. Methods                                                                   |           |
| 3. Results and discussion                                                    | 4         |
| 3.1. State of the physical and chemical parameters in Lake Durowskie         | 4         |
| 3. 2. Phytoplankton community in the pelagic zone                            | 11        |
| 3.3. Periphytic species presence                                             | 14        |
| 4. Conclusion                                                                | 15        |
| References                                                                   | 16        |
| Annex 1. List of phytoplanktons found in pelagic zone                        | 17        |
| Annex 2. Species composition and quantity of organisms.                      |           |
| Annex 3. List of diatom species found in periphyton analysis                 |           |
| Annex 4. Dominant and subdominant species of phytoplankton in Lake Durowskie |           |
| Annex 5. Characteristic of dominants in Durowskie Lake based on functional   | groups of |
| phytoplankton by Reynolds (1997)                                             |           |

#### 1. Aims

Our analysis aims to address the following questions.

- What is the state of the physical and chemical parameters in the lake?
- What types of phytoplankton predominates in the pelagic zone?
- Which are the periphytic species present?

#### 2. Methods

*Sites:* Samples were taken from Struga Gołaniecka (inflow and outflow) and in the lake, at aerators 1 and 2, 2 opposite beaches and 2 deep water sites.

| Parameters                           |                           |                                                                   |
|--------------------------------------|---------------------------|-------------------------------------------------------------------|
| surface                              | 143.7 ha                  | Struga Inflow                                                     |
| volume                               | 11,322,900 m <sup>3</sup> | Gotaniecka                                                        |
| max depth                            | 14.6 m                    |                                                                   |
| mean depth                           | 7.9 m                     | (S R)                                                             |
| main tributary                       | Struga Gołaniecka         | Aerator 2                                                         |
| surface of the whole catchment area  | 236.1 km <sup>2</sup>     | 0 300m Middle 1                                                   |
| surface of the direct catchment area | 1,581.3 ha                | Ividue I                                                          |
| share of agricultural area           | 58.26%                    | Middle 2                                                          |
| share of forests                     | 33.52%                    | Periphyton 3 (from stone)                                         |
| urban area                           | 8.25%                     | Periphyton 2 (from stone)<br>Beach 2<br>Beach 1                   |
|                                      |                           | Periphyton 1 (from ston<br>Aerator 1<br>Periphyton 4 (from stone) |

Table 1. Basic morphometric data of Durowskie Lake and its catchment area

Fig. 1. Sampling sites in and around Lake Durowskie

*Water parameters* measured were: pH, conductivity, temperature, oxygen content, nitrate and phosphate concentration at vertical profile at depth intervals of 1m starting from the surface (0m) to the bottom of the lake. Samples of water were collected at each site using plankton net for qualitative species identification and a 100mL sample for quantitative analysis of species abundance. Lugos solution was added to each samples to preserve and fix the phytoplanktons. Periphytic samples were also collected from lake edges by using a brush and preserved by adding  $H_2O_2$  into the bottled samples. Diatom samples were prepared for identification according to the procedures described by Battarbee (1986). Also, 500mL samples were taken and filtered onto Whatman paper for chlorophyll *a* analysis. Chlorophyll *a* concentration was determined fluorometrically according to the procedures described by Strickland and Parsons (1972). These physical data for 2009 were compared with those of 2008.

*Phytoplankton count:* We identified and quantified the phytoplankton in 100 cells counting chamber of 0.0125mm<sup>3</sup> each. The species abundance and community composition in the sample was estimated from these cells. Phytoplankton biovolume was estimated from cell numbers and specific volumes. We then calculated mixed trophic index of phytoplankton using the formula: Q= (Cyanophyceae+ Chlorococcales+Centriceae+Euglenophyta) /Desmidiales Q<2,5 oligotrophic lake, Q>2,5 eutrophic lake

#### 3. Results and discussion

#### 3.1. State of the physical and chemical parameters in Lake Durowskie

All sites within the lake are eutrophic or even hypertrophic based on chlorophyll *a*, Secchi-disc transparency and trophic state index calculations (table 1).

## Table 1. Trophic state

| Parameter              | -                                                                                                                         |                         | -                        | Trophic state        | 9                        | -        | -        | Reference                  |
|------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------|----------------------|--------------------------|----------|----------|----------------------------|
|                        | Standard range                                                                                                            | Aerator 1               | Aerator 2                | Beach 1              | Beach 2                  | Middle 1 | Middle 2 |                            |
| Secchi disc<br>(SD)/ m | Oligotrophic<br>>5<br>Mesotrophic<br>5-3<br>Eutrophic<br><3                                                               | 0,9-1,1<br>(mean=1,034) | 1,07-1,4<br>(mean=1,204) | 1-1,1<br>(mean=1,05) | 1,05-1,25<br>(mean=1,15) | 1.15     | 1.2      | Chapra and<br>Dobson, 1981 |
| Chl <i>a /</i> µg/l    | Oligotrophic<br><2.9<br>Mesotrophic<br>2.9-5.6<br>Eutrophic<br>>5.6                                                       | 19.9                    | 15.44                    | 16.69                | -                        | 11.23    | 10.26    | Chapra and<br>Dobson, 1981 |
| TSI (SD) <sup>*</sup>  | Oligotrophic<br><40<br>Mesotrophic<br>40-45<br>Meso-Eutrophic<br>45-50<br>Eutrophic<br>51-85<br>Hypertrophic<br>>90       | 59.98                   | 59.91                    | 59.98                | 59.93                    | 59.93    | 59.91    | Carlson, 1977              |
| TSI (Chl<br>mg/l)      | Ultraoligotrophic<br><0.5<br>Oligotrophic<br>0.5-1<br>Mesotrofic<br>2.5-8.0<br>Eutrophic<br>8.0-25<br>Hypertrophic<br>>25 | 68.94                   | 66.45                    | 67.21                |                          | 63.33    | 62.44    | Zdanowskim,<br>1991        |

Note: \* Trophic State Index based on secchi disc (TSI SD) = 10 (6 – lnSD/ln2) \*\* Trophic State Index based on chlorophyll (TSI Chl) = 10 [6- (2.04-0.68lnChl)/ln2]

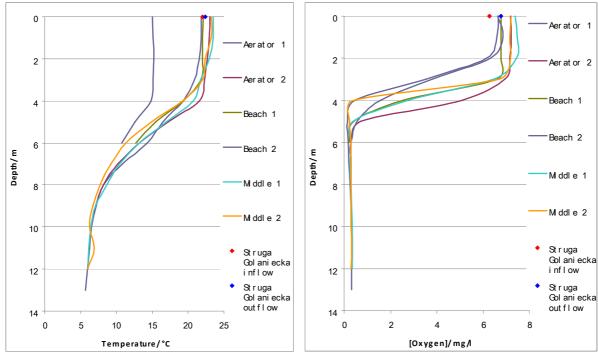



Fig. 2. Vertical stratification of temperature at 6 sampling sites

Fig. 3. Vertical distribution of dissolved oxygen at 6 sampling sites

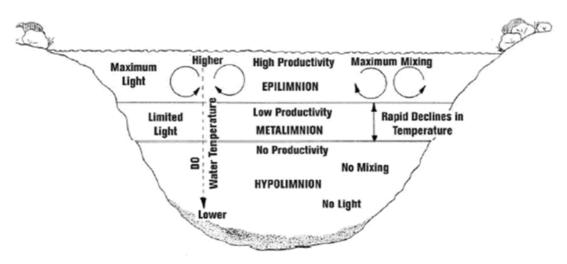
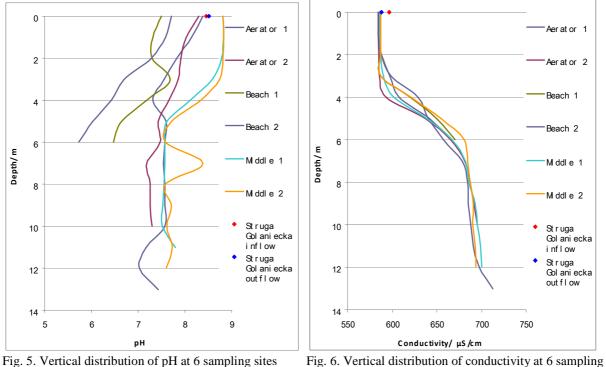




Fig. 4. Thermal stratification in a lake (Kolbe 2005)

The patterns of temperature in the vertical profile (see fig. 4 for thermal stratification) of the sampling sites were similar to those of dissolved oxygen (figs. 2 and 3). Across the lake, the epilimnion layer (0-4m depth on average) has an average temperature around 20°C. Oxygen content is between 6-8mg/l (60-80%  $O_2$ ) at depth up to 2m and decreased sharply between the depth of 2 and 5m. All 6 measured sites are highly anoxic by 5m depth but aerator 1 and middle

2 sites are highly anoxic by 4m depth. At depths of 4m to 8m from surface, the temperature decreased dramatically, from 20°C to 5°C, indicating the metalimnion, or thermocline which is characterized by anoxic conditions. The hypolimnion (>8m depth) was characterized by highly anoxic condition ( $0.16mg/l - 0.3mg/l O_2$ ; 1.66 - 2.9% O<sub>2</sub>). Struga Gołaniecka is a shallow river with less than 1m depth at the outflow and inflow sites, and their physical parameters lie within the range of the rest of the lake at surface level (figs. 2-3,5-6).



sites

The pH remained between the range of 6 and 8 at aerator 1, aerator 2, beach 1, middle 1 and middle 2 but at beach 2, the pH changed significantly, from pH 7 at surface to pH 5 at the bottom layer of 6m depth (fig. 5). This stratification of pH from the epilimnion to hypolimnion layer is likely the effect of a greater abundance of algae at the surface which removed carbon dioxide in the epilimnion layer. Previous study in the area by Messyasz (2000) reported that high concentration of calcium (>78.5mg Ca/L) resulted in the high buffering capacity of the water. Our conductivity measurements indicate that conductivity is high, between  $584\mu$ S/cm and  $758\mu$ S/cm across all sites on the lake; with general pattern of increasing conductivity from

epilimnion to hypolimnion (fig. 6), suggesting that greater amount of suspended organic matter at the lower layers due to the lack of aerobic decomposition of organic matter.

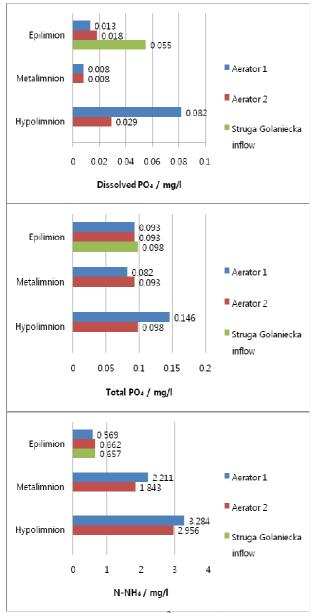
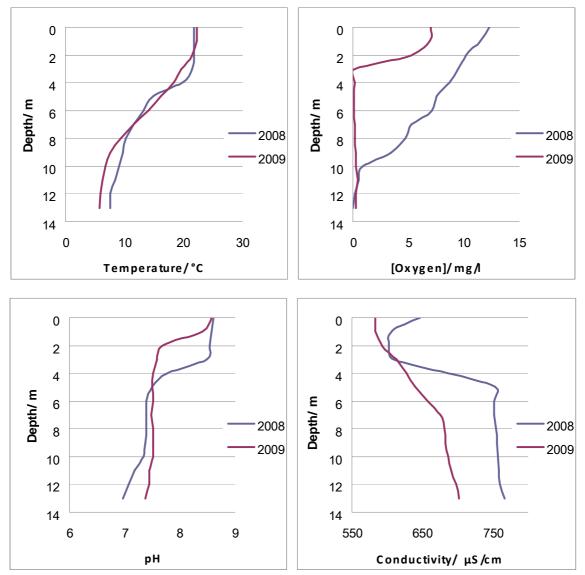
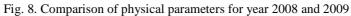


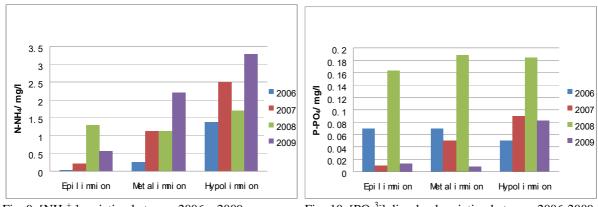

Fig. 7. Dissolved and total PO<sub>4</sub><sup>3-</sup> and NH<sub>4</sub><sup>+</sup> concentration variation at aerators 1 and 2 and Struga Gołaniecka inflow

The concentration of dissolved and total  $PO_{4}^{3-}$ is high at Struga Gołaniecka, suggesting that it is contributing to  $PO_4^{3-}$ load in the lake (fig. 7). The dissolved  $PO_4^{3-}$ concentration at aerator 1 is higher than at aerator 2 in the hypolimnion; likely due to the combined effects of better oxygenation at aerator 2 due to shallower depth while aerator 1 has deeper depth and poorer oxygenation at the lower layer. The total  $PO_4^{3-}$  at epilimnion is high at both aerator 1 and 2 but the dissolved  $PO_4^{3-}$  only contribute approximately 14% of the total  $PO_4^{3-}$ , corresponding to the presence of great amount of algae biomass in the epilimnion layer. At the hypolimnion layer, higher dissolved PO<sub>4</sub><sup>3-</sup> concentration reflected the anoxic condition that did not favour biomass growth (44-70% of total  $PO_4^{3-}$  in dissolved form). The trend at all 3 sites showed increase in concentration of NH4<sup>+</sup> from epilimnion to hypolimnnion, corresponding the decrease in phytoplankton with to increasing depth. As no NO<sub>3</sub><sup>-</sup> or NO<sub>2</sub><sup>-</sup> was found at aerator 1 or aerator 2 from epilimnion to hypolimnion layer, anaerobic decomposition of sediment layer is likely an important contributor to hypolimnion NH<sub>4</sub><sup>+</sup>.


The observations of the physical parameters above suggest that the aerators are not very effective at oxygenating the hypolimnion layer during summer time. We have observed that the aerator rotation based on 5 day-average was 11.2 rotations per minute at aerator 1 and 9.2 rotations per minute at aerator 2, which may not generate sufficient energy to mix the water column sufficiently to aerate the metalimnion and hypolimnion.

| Year                | 2008                                | 2009                                | <b>Trophic State*</b> |
|---------------------|-------------------------------------|-------------------------------------|-----------------------|
| Date                | 20th, July                          | 20th, July                          |                       |
| Place               | Aerator 1                           | Aerator 1                           |                       |
| Secchi disc<br>(SD) | 0.9m                                | 1m                                  | Eutrophic             |
| transparency        | 0.911                               | 1111                                |                       |
| TSI (SD)            | 60.05                               | 60.00                               | Eutrophic             |
| Weather             | Cloudy, rainy, huge<br>rain on 19th | Cloudy with intermittent sun, windy |                       |


Table 2. Comparison of 2008 and 2009 physical and chemical parameters


\* refer to table 1 for details on standard range and reference

We also compared the physical and chemical condition of Lake Durowskie based on data available from 2008 at aerator 1. The condition at aerator 1 remained eutrophic with a decline observed with respect to oxygenation. However, this single sample comparison is insufficient for any conclusions, particularly as heavy rain was observed the night before sampling in 2008 and this may have contributed to higher dissolved oxygen at the site. Additionally, 2 dominant species of cyanobacteria found at the site -Limnothrix sp. and Planktothrix sp. - are sensitive to flushing and as such, the abundance of cyanobacteria is lower after rain, which allows dissolved oxygen content to recover. Conductivity differences were also explanable by the anoxic condition at the hypolimnion while pH variation between 2008 and 2009 at depth up to 4m is explainable by rain forcing algae into the deeper parts of the lake and photosynthetic activities of these algae increased alkalinity at those depths although we expect that this effect is moderated by acid leached into the lake from the surrounding pine forest (fig. 8). The  $NH_4^+$  concentration is higher at the metalimnion and hypolimnion layers in 2009 compared to 2008, corresponding with the poorer oxygen condition in those layers in 2009 compared to 2008 (fig. 9). The dissolved  $PO_4^{3-}$  concentration is significantly higher in 2008 compared to 2009 (T=6.2806, p= 0.0244, d.f.=4; fig. 10). This higher phosphate condition correspond to the higher algae biomass in 2008



compared to 2009 (fig. 11). The significant decrease in  $PO_4^{3-}$  in 2009 indicated that chemical intervantion which has begun in spring 2009 is successful at sedimenting  $PO_4^{3-}$ .





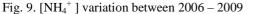



Fig. 10.  $[PO_4^{3-}]$  dissolved variation between 2006-2009

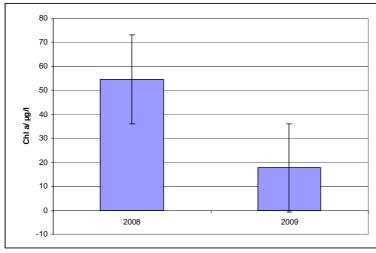



Fig. 11. Comparing algae biomass using surrogate indicator chlorophyll a

These changes observed from 2008 to 2009 further indicated that the aerator has not managed to improve the physical parameters at the local site, particularly in relation to oxygen content but  $PO_4^{3-}$  and algae biomass conditions have improved at aerator 1 due to chemical intervention.

#### 3. 2. Phytoplankton community in the pelagic zone

We found 73 species of phytoplanktons from 7 groups in Lake Durowskie (table 3; fig 12; refer to annex 1 for species list). Cyanoprokaryota and Dinophyceae contribute most to the species diversity in the lake followed by Bacillariophyceae (fig. 12) but based on overall abundance and biovolume, Cyanoprokaryota is the dominant group in Lake Durowskie (fig. 13). The highest phytoplankton count (1.541\*10<sup>12</sup>cells/l) and the highest phytoplankton biovolume were on beach

1 (2.58 mg/l). The lowest phytoplankton count  $(2.782*10^9)$  was at aerator 2 but the lowest phytoplankton biovolume was found at aerator 1 (41.472mg/l). We observed the domination of 2 species of Cyanoprokaryota, which are *Planktrothrix agardhii* and *Aphanizomenon flos-aquae* (both in terms of quantity and biovolume) at aerator 2 and beach 1. *A. flos-aquae* particularly thrives under high NH<sub>4</sub><sup>+</sup> content, which is the current state of the lake. Although Dinophyceae *Ceratium hirundinella* dominates aerator 1 by biovolume (due to their high biovolume per cell), Cyanoprokaryota is the dominant species by abundance (fig. 13; refer to annex 4 for species list & annex 5 for characteristics of these species).

Table 3. Species discovered in LakeDurowskie according to group

| Group             | Number of species |
|-------------------|-------------------|
| Cyanoprokaryota   | 18                |
| Bacillariophyceae | 12                |
| Chlorophyceae     | 19                |
| Cryptophyceae     | 6                 |
| Dinophyceae       | 4                 |
| Euglenophyceae    | 3                 |
| Chrysophyceae     | 5                 |

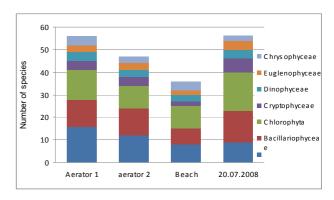



Fig. 12. Number of phytoplankton species at each site

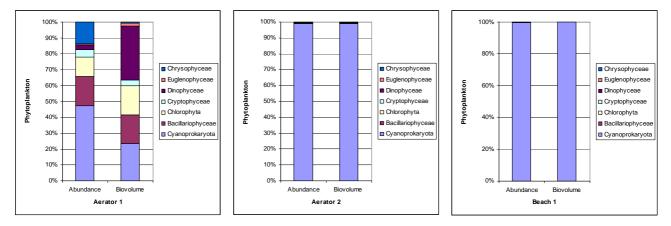



Fig. 13. Quantity and biovolume of algae at aerator 1, aerator 2 and beach 1

|           | Mixed trophic | Trophic state | Standard scale | Reference   |
|-----------|---------------|---------------|----------------|-------------|
| Station   | index         |               |                |             |
| Aerator 1 | 16            | Eutrophic     | > 3            | Round, 1981 |
| Aerator 2 | 26            | Eutrophic     | > 3            | Round, 1981 |
| Beach     | 9             | Eutrophic     | > 3            | Round, 1981 |
| 2008      | 9.67          | Eutrophic     | > 3            | Round, 1981 |

Table 4. Mixed Trophic Index of Phytoplankton

According Round's scale (1981) for phytoplankton, Durowskie Lake is eutrophic. We also compared the results of 2009 to that of 2008 and observed a greater Cyanoprokaryota biovolume near Aerator 1 in 2008 (fig. 14). *Limnothrix redekei* (Cyanoprokaryota) was the dominant species in 2008 at aerator 1 and is replaced by *Ceratium hirundinella* (Dinophyceae) in 2009. Chlorophyta increased their participation in the total biovolume in 2009 compared to 2008 although Cyanoprokaryota remained as overall the dominant group in both years. This agreed with the general anoxic conditions of the metalimnion and hypolimnion layers which are unfavourable to most phytoplanktons but tolerable to Cyanoprokaryota. The species composition in both years is comparable (fig. 12).

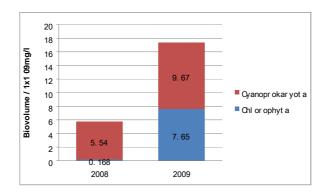



Fig. 14. Cyanoprokaryota and Chlorophyta biovolume comparison between 2008 and 2009

Based on these observations of phytoplankton diversity and abundance, Cyanoprokaryota is still dominant at the lake but aerator 1 has experienced a slight increase in green algae and dinoflagelletes in 2009 compared to 2008.

#### **3.3.** Periphytic species presence

A total of 20 epilithic diatom species was found at the 4 sites where periphytons were sampled (refer to annex 3), but only two dominant species are described here. *Encyonema minutum* is dominant at sites 1 and 2 while *Achnanthes lanceolata* is dominant at sites 3 and 4 (figs. 15 and 16). *Achnanthes lanceolata* indicates eutrophic conditions while *Encyonema minutum* is a ubiquitous species.

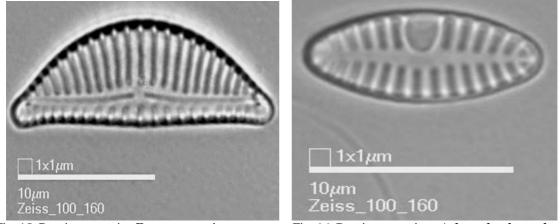



Fig. 15. Dominant species *Encyonema minutum* at periphyton sites 1 and 2

Fig. 16. Dominant species - *Achnanthes lanceolata* at periphyton sites 3 and 4

Based on the diatom species found, the water quality index was calculated using the Multimetric Diatom Index. The results indicated that the water quality at all sites is moderate (fig.17).

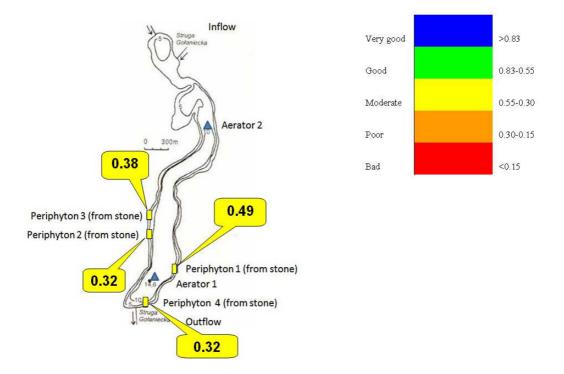



Fig. 17. Comparison of periphyton diatoms using epilithic diatom index at 4 sites

#### 4. Conclusion

The lake is still eutrophic based on physical, chemical and phytoplankton parameters. The combined observations of the physical parameters at the 6 lake sites suggest that the aerators are not very effective at oxygenating the hypolimnion layer during summer time as the wind is insufficient in the area to generate enough energy to aerate the lake. The comparison findings further indicated that the aerator has not managed to improve the physical parameters even at a local scale, particularly in relation to oxygen content but  $PO_4^{3-}$  and algae biomass conditions have declined at aerator 1 due to effective chemical intervention. Cyanoprokaryota is still dominant at the lake but aerator 1 has experienced a slight increase in green algae and dinoflagelletes in 2009 compared to 2008. Finally, water quality based on diatom analysis indicated that water quality is moderate. The tentative results suggest that in general, there are no significant observable changes up to now since the introduction of aerator 1. The effects of biomanipulation on phytoplankton abundance are also not visible within the limits of this analysis.

#### References

Battarbee, R.W. 1986. Diatom Analysis. In B.E. Berglund (Ed.) Handbook of Holocene Palaeoecology and Palaeohydrology. Wiley pp. 527-570.

Carlson, R.E. 1977. A trophic state index for lakes, Limnology and Oceanography, 22: 361-369.

Chapra, S.C. and H.F. Dobson. 1981. Quantification of the lake trophic typologies of Naumann (surface quality) and Thienemann (oxygen) with special reference to the Great Lakes. *Limnol. Oceanogr.* 22:361-369.

Kolbe, C.M. 2005. A Guide to Freshwater Ecology, Texas Commission on Environmental Quality.

Messyasz, B. 2000. The diel pattern of changes in vertical distribution of phytoplankton in two eutrophic stratified lakes, *Acta Hydrobiol.*, 42 (1/2): 41-52.

Round, F.E. 1981: The ecology of algae. – Cambridge University Press, Cambridge, London, New York, New Rochelle, Melbourne, Sydney, p.653

Strickland, J.D. and Parsons, T.R. 1972. A practical handbook of seawater analysis (2<sup>nd</sup> edn). Bull. Fish. Res. Bd Can., 167.

Zdanowski, B. 1982. Variability of N and P contents and lake eutrophication, *PGR. Arch. Hydrobiol.*, 29: 541-597.

#### Annex 1. List of phytoplanktons found in pelagic zone

| Cyanoprokaryota             |                                   | Cryptophyceae      |
|-----------------------------|-----------------------------------|--------------------|
| Anabaena flos-aquae         | Fragilaria crotonensis            | Cryptomonas ero    |
| Aphanizomenon flos-aquae    | Fragilaria ulna                   | Cryptomonas gra    |
| Aphanizomenon isatschenkoi  | Fragilaria ulna var. angustissima | Cryptomonas man    |
| Aphanocapsa grevillei       | Navicula cincta                   | Cryptomonas opa    |
| Aphanocapsa incerta         | Placoneis gastrum                 | Rhodomonas glob    |
| Cyanogranis ferruginea      | Asterionella formosa              | Rhodomonas min     |
| Gloeocapsa minuta           | Chlorophyta                       | Dinophyceae        |
| Gloeocapsa turgida          | Ankistrodesmus falcatus           | Ceratium hirundin  |
| Limnothrix lauterbornii     | Characium angustum                | Peridiniopsis berg |
| Limnothrix redekei          | Chlamydomonas globosa             | Peridiniopsis cuni |
| Lyngbya hieronymusii        | Chlamydomonas reinhardtii         | Peridinium cinctu  |
| Lyngbya limnetica           | Coelastrum reticulatum            | Euglenophyceae     |
| Oscillatoria gracilis       | Cosmarium exiguum                 | Colacium vesicul   |
| Oscillatoria limnetica      | Cosmarium regnellii               | Euglena pisciforn  |
| Oscillatoria pseudogeminata | Dictyosphaerium pulchellum        | Phacus orbicular   |
| Phormidium granulatum       | Monoraphidium contortum           | Chrysophyceae      |
| Phormidium tenue            | Monoraphidium komarkovae          | Erkenia subaequo   |
| Planktothrix agardhii       | Pteromonas angulosa               | Dinobryon diverg   |
| Spirulina major             | Monoraphidium minutum             | Dinobryon cysts    |
| Bacillariophyceae           | Oocystis lacustris                | Dinobryon elegar   |
| Amphora ovalis              | Scenedesmus longispina            | Dinobryon bavarı   |
| Cyclotella atomus           | Scenedesmus maxima                |                    |
| Fragilaria construens       | Scenedesmus quadricauda           |                    |
| Cyclotella meneghiniana     | Tetraedron minimum                |                    |
| Cyclotella operculata       | Tetraedron triangulare            |                    |
| Cyclotella radiosa          | Treubaria schmidlei               |                    |

nonas erosa nonas gracilis nonas marssonii nonas opata ionas globosa nonas minuta yceae m hirundinella opsis berolinense opsis cuningtoni um cinctum ophyceae m vesiculosum pisciformis orbicularis phyceae subaequciliata on divergens on cysts on elegantissimum on bavaricum

| Annex 2. | Species | composition | and | quantity | of | organisms. |
|----------|---------|-------------|-----|----------|----|------------|
|----------|---------|-------------|-----|----------|----|------------|

| Volume     Species |                             | Aera            | ator 1              | Aera            | ntor 2              | Beach           |                     |  |
|--------------------|-----------------------------|-----------------|---------------------|-----------------|---------------------|-----------------|---------------------|--|
|                    |                             | count [cells/l] | biovolume<br>[mg/l] | count [cells/l] | biovolume<br>[mg/l] | count [cells/l] | biovolume<br>[mg/l] |  |
|                    | Cyanoprokaryota             |                 |                     |                 |                     |                 |                     |  |
| 1256               | Anabaena flos-aquae         |                 | 0                   | 120000          | 0.151               |                 | 0                   |  |
| 1962,5             | Aphanizomenon flos-aquae    | 9526666         | 1.869               | 935280500       | 1.83                | 9,18212E+11     | 1,80                |  |
| 491                | Aphanizomenon isatschenkoi  |                 | 0                   |                 | 0                   | 360000          | 0.177               |  |
| 165                | Aphanocapsa grevillei       | 112000          | 0.018               | 184000          | 0.03                |                 | 0                   |  |
| 165                | Aphanocapsa incerta         | 480000          | 0.079               |                 | 0                   |                 | 0                   |  |
| 130                | Cyanogranis ferruginea      | 112000          | 0.015               | 1040000         | 0.135               |                 | 0                   |  |
| 165                | Gloeocapsa minuta           | 112000          | 0.018               |                 | 0                   |                 | 0                   |  |
| 165                | Gloeocapsa turgida          | 112000          | 0.018               |                 | 0                   |                 | 0                   |  |
| 314                | Limnothrix lauterbornii     | 1505000         | 0.473               | 237037500       | 74,43               | 120000          | 0.038               |  |
| 314                | Limnothrix redekei          |                 | 0                   | 11920000        | 3.743               | 11520000        | 3.617               |  |
| 5273               | Lyngbya hieronymusii        | 540000          | 2.847               | 80000           | 0.422               |                 | 0                   |  |
| 177                | Lyngbya limnetica           | 2022666667      | 0.358               | 2930000         | 0.519               |                 | 0                   |  |
| 314                | Oscillatoria gracilis       | 560000          | 0.176               | 120000          | 0.038               | 120000          | 0.038               |  |
| 314                | Oscillatoria limnetica      | 3702000         | 1.162               | 2400000         | 0.754               | 4512000         | 1.417               |  |
| 314                | Oscillatoria pseudogeminata | 90000           | 0.028               |                 | 0                   |                 | 0                   |  |
| 490                | Phormidium granulatum       | 1105333,333     | 0.542               | 271359          | 1.32                | 120000          | 0.059               |  |
| 490                | Phormidium tenue            | 112000          | 0.055               |                 | 0                   |                 | 0                   |  |
| 1256               | Planktothrix agardhii       | 1570000         | 1.972               | 986745000       | 1.23                | 6,20169E+11     | 7,78                |  |
| 314                | Spirulina major             | 112000          | 0.035               |                 | 0                   |                 | 0                   |  |
| SUM                |                             | 1319966667      | 9.667               | 2449216333      | 3.28                | 1,5384E+12      | 2,58                |  |
|                    | Bacillariophyceae           |                 | 0                   |                 | 0                   |                 | 0                   |  |
| 5024               | Amphora ovalis              | 56000           | 0.281               | 120000          | 0.603               | 120000          | 0.603               |  |
| 200                | Cyclotella atomus           | 112000          | 0.022               | 80000           | 0.016               |                 | 0                   |  |
| 2270               | Cyclotella meneghiniana     | 30000           | 0.068               | 320000          | 0.726               |                 | 0                   |  |

| 254  | Cyclotella operculata      | 86000      | 0.002 | 80000   | 0.02   |            | 0     |
|------|----------------------------|------------|-------|---------|--------|------------|-------|
| 1250 | Cyclotella radiosa         | 436000     | 0.545 | 960000  | 1.2    | 732000     | 0.915 |
| 1450 | Fragilaria construens      | 56000      | 0.081 | 120000  | 0.174  | 120000     | 0.174 |
| 1100 | Fragilaria crotonensis     | 56000      | 0.062 | 120000  | 0.132  | 1884000    | 2.072 |
| 1360 | Fragilaria ulna            | 3228666667 | 4.391 | 4460000 | 6.066  | 3035030000 | 4,13  |
|      | Fragilaria ulna var.       |            |       |         |        |            |       |
| 2340 | angustissima               | 830000     | 1.942 | 900000  | 2.106  | 1272000    | 2.976 |
| 750  | Navicula cincta            | 112000     | 0.084 | 120000  | 0.09   | 120000     | 0.09  |
| 750  | Placoneis gastrum          | 60000      | 0.045 |         | 0      |            | 0     |
| 409  | Asterionella formosa       | 60000      | 0.025 |         | 0      |            | 0     |
| SUM  |                            | 5122666667 | 7.568 | 7280000 | 11.133 | 3039278000 | 4,13  |
|      | Chlorophyta                |            | 0     |         | 0      |            | 0     |
| 1105 | Ankistrodesmus falcatus    |            | 0     |         | 0      | 120000     | 0.133 |
| 960  | Characium angustum         | 86000      | 0.083 |         | 0      |            | 0     |
| 267  | Chlamydomonas globosa      | 112000     | 0.029 | 80000   | 0.021  | 10720000   | 2.862 |
| 540  | Chlamydomonas reinhardtii  | 183000     | 0.099 | 800000  | 0.432  |            | 0     |
| 3791 | Coelastrum reticulatum     | 30000      | 0.114 |         | 0      |            | 0     |
| 3791 | Cosmarium exiguum          | 90000      | 0.341 |         | 0      | 216000     | 0.819 |
| 162  | Cosmarium regnellii        | 168000     | 0.027 | 360000  | 0.058  | 120000     | 0.019 |
| 4822 | Dictyosphaerium pulchellum | 1020000    | 4.918 |         | 0      |            | 0     |
| 176  | Monoraphidium contortum    |            | 0     |         | 0      | 1068000    | 0.188 |
| 3860 | Monoraphidium komarkovae   |            | 0     |         | 0      | 120000     | 0.463 |
| 728  | Pteromonas angulosa        | 560000     | 0.408 | 720000  | 0.524  |            | 0     |
| 100  | Monoraphidium minutum      |            | 0     | 360000  | 0.036  |            | 0     |
| 2554 | Oocystis lacustris         | 562000     | 1.435 |         | 0      |            | 0     |
| 490  | Scenedesmus longispina     |            | 0     | 80000   | 0.039  |            | 0     |
| 490  | Scenedesmus maxima         | 224000     | 0.110 | 160000  | 0.078  |            | 0     |
| 490  | Scenedesmus quadricauda    | 1133333333 | 0.056 | 120000  | 0.059  | 156000     | 0.076 |
| 111  | Tetraedron minimum         | 122000     | 0.014 | 6832000 | 0.758  | 288000     | 0.032 |
| 120  | Tetraedron triangulare     | 112000     | 0.013 | 6776000 | 0.813  | 120000     | 0.014 |
| 940  | Treubaria schmidlei        | 0          | 0     |         | 0      | 144000     | 0.135 |

| SUM       |                           | 3382333333 | 7.647  | 16288000   | 2.784  | 13072000    | 4.742 |
|-----------|---------------------------|------------|--------|------------|--------|-------------|-------|
|           | Cryptophyceae             |            |        |            | 0      |             | 0     |
| 1620      | Cryptomonas erosa         | 336000     | 0.544  | 560000     | 0.907  |             | 0     |
| 1540      | Cryptomonas gracilis      |            | 0      | 80000      | 0.123  |             | 0     |
| 1270      | Cryptomonas marssonii     | 60000      | 0.076  |            | 0      |             | 0     |
| 1994      | Cryptomonas opata         | 112000     | 0.223  | 80000      | 0.160  |             | 0     |
| 706       | Rhodomonas globosa        |            | 0      |            | 0      | 120000      | 0.085 |
| 706       | Rhodomonas minuta         | 814000     | 0.575  | 160000     | 0.113  | 2304000     | 1.627 |
| SUM       |                           | 1322000    | 1.419  | 880000     | 2.784  | 2424000     | 1.711 |
|           | Dinophyceae               |            | 0      |            | 0      |             | 0     |
| 46740     | Ceratium hirundinella     | 131000     | 6.123  |            | 0      |             | 0     |
| 9200      | Peridiniopsis berolinense | 66000      | 0.607  | 120000     | 1.104  | 240000      | 2.208 |
| 9000      | Peridiniopsis cuningtoni  | 360000     | 3.240  | 220000     | 1.98   | 372000      | 3.348 |
| 21840     | Peridinium cinctum        | 192000     | 4.193  | 500000     | 10.92  | 96000       | 2.097 |
| SUM       |                           | 749000     | 14.163 | 840000     | 14.004 | 708000      | 7.653 |
|           | Euglenophyceae            |            | 0      |            | 0      |             | 0     |
| 1766      | Colacium vesiculosum      | 112000     | 0.198  | 160000     | 0.283  |             | 0     |
| 3926      | Euglena pisciformis       | 56000      | 0.220  | 120000     | 0.471  | 96000       | 0.377 |
| 4006      | Phacus orbicularis        | 56000      | 0.224  | 120000     | 0.481  | 120000      | 0.481 |
| SUM       |                           | 224000     | 0.642  | 400000     | 1.234  | 216000      | 0.858 |
|           | Chrysophyceae             |            | 0      |            | 0      |             | 0     |
| 65        | Erkenia subaequciliata    | 3002000    | 0.195  | 2400000    | 0.156  | 18048000    | 1.173 |
| 183       | Dinobryon divergens       | 570000     | 0.104  | 520000     | 0.095  | 192000      | 0.035 |
| 310       | Dinobryon cysts           | 168000     | 0.052  | 120000     | 0.037  | 120000      | 0.037 |
| 183       | Dinobryon elegantissimum  | 80000      | 0.015  |            | 0      |             | 0     |
| 1115      | Dinobryon bavaricum       |            | 0      |            | 0      | 1512000     | 1.686 |
| SUM       |                           | 3820000    | 0.366  | 3040000    | 0.288  | 19872000    | 2.931 |
| total sum |                           | 2781966667 | 41.472 | 2477944333 | 3,32   | 1,54147E+12 | 2,58  |

| Species name               |  |
|----------------------------|--|
| Achnanthes clevei          |  |
| Achnanthes lanceolata      |  |
| Amphora ovalis             |  |
| Cocconeis pediculus        |  |
| Cocconeis placentula       |  |
| Cyclotella radiosa         |  |
| Cyclotella stelligera      |  |
| Cymbella affinis           |  |
| Cymbella sinuata(Reimeria) |  |
| Diatoma vulgare            |  |
| Encyonema minutum          |  |
| Fragilaria crotonensis     |  |
| Gomphonema gracile         |  |
| Gomphonema olivaceum       |  |
| Navicula capitata          |  |
| Navicula lanceolata        |  |
| Nitzschia recta            |  |
| Synedra acus               |  |
| Synedra ulna(Fragilaria)   |  |
| Tabellaria flocculosa      |  |

## Annex 3. List of diatom species found in periphyton analysis

## Annex 4. Dominant and subdominant species of phytoplankton in Lake Durowskie

|                |                         | Aerator |           |        |                     |
|----------------|-------------------------|---------|-----------|--------|---------------------|
| Site           |                         | 1       | Aerator 2 | Beach  | Comparing with 2008 |
| By quantity of |                         |         |           |        |                     |
| each species   | Dominantes              |         |           |        |                     |
|                | Aphanizomenon flos-     |         |           |        |                     |
|                | aquae                   |         | 37,70%    | 59,57% |                     |
|                | Erkenia subaequciliata  | 10,79%  |           |        |                     |
|                | Fragilaria ulna         | 11,60%  |           |        |                     |
|                | Limnothrix redekei      |         |           |        |                     |
|                | Phormidium granulatum   |         | 10,95%    |        |                     |
|                | Planktothrix agardhii   |         | 39,82%    | 40,23% |                     |
|                | Subdominantes           |         |           |        |                     |
|                | Lyngbya limnetica       | 7,27%   |           |        |                     |
|                | Limnothrix lauterbornii |         | 9,57%     |        |                     |
| By biovolume   | Dominantes              |         |           |        |                     |
|                | Aphanizomenon flos-     |         |           |        |                     |
|                | aquae                   |         | 55,30%    | 69,70% |                     |
|                | Ceratium hirundinella   | 14,80%  |           |        |                     |
|                | Dictyosphaerium         | 11,90%  |           |        |                     |

| pulchellum                 |        |        |        |        |
|----------------------------|--------|--------|--------|--------|
| Fragilaria ulna            | 10,60% |        |        |        |
| Planktothrix agardhii      |        | 37,30% | 30,13% |        |
| Limnothrix redekei         |        |        |        | 47,30% |
| Subdominantes              |        |        |        |        |
| Lyngbya hieronymusii       | 6,87%  |        |        |        |
| Peridiniopsis elpatiewskyi |        |        |        | 6,60%  |
| Pseudanabaena limnetica    |        |        |        | 5,27%  |

# Annex 5. Characteristic of dominants in Durowskie Lake based on functional groups of phytoplankton by Reynolds (1997)

#### Aphanizomenon flos-aquae - codon H<sub>1</sub>

- Habitat: dinitrogen fixing Nostocaleans
- Tolerances: low carbon
- Sensitivities: low phosphorus
- Can't occur below 8<sup>0</sup>C
- Can occur in low concentration of nitrogen, silica and carbon

#### $Planktrothrix agardhii - codon S_1$

- Habitat: turbid, mixed layers, enriched, exposed and generally shallow lakes at most latitudes
- Sensitivities: flushing
- Can occur below 8<sup>0</sup>C
- Doesn't like low concentration of phosphorus and nitrogen.
- Can occur in low concentration of silica and carbon.

#### $\textit{Limnothrix redekei} - codon \ S_1$

- Dominant species only in sample from last year
- Habitat: turbid mixed layers
- No sensitivities
- Can occur below  $8^{\circ}C$
- Doesn't like low concentration of phosphorus and nitrogen

- Tolerates low concentrate of silica and carbon.

#### Ceratium hirundinella – codon $L_M$

- Habitat: summer epilimnion in eutrophic lakes
- Actually it's rather eutrophic and may be associated equally with Cyanoprokaryota
- Tolerances: very low carbon
- Sensitivities: mixing
- Doesn't occur below 8<sup>0</sup>C
- Doesn't like low concentration of phosphorus and nitrogen
- Can occur in low concentration of silica and carbon.